654 research outputs found

    Adherens junctions remain dynamic

    Get PDF
    One of the four principal categories of cell-cell junctions that hold together and shape distinct tissues and organs in vertebrates, adherens junctions (AJs) form cell-cell contacts that connect transmembrane proteins with cytoskeletal actin filaments to provide architectural strength, aid in morphogenesis, and help to maintain proper tissue homeostasis. The classical organization of AJs, consisting of transmembrane cadherins and cytoplasmically attached β-catenins and α-catenins assembled together into a multiprotein complex, was once thought obligatory to craft a robust and stable connection to actin-based cytoskeletal elements, but this architecture has since been challenged and questioned to exist. In a stimulating paper published in a recent issue of BMC Biology, Millán et al. provide convincing evidence that in confluent vascular endothelial cells a novel dynamic vascular endothelial (VE)-cadherin-based AJ type exists that interacts with and physically connects prominent bundles of tension-mediating actin filaments, stress fibers, between neighboring cells. Stress fibers were known previously to link to integrin-based focal adhesion complexes but not to cell-cell adhesion mediating AJs. These new findings, together with previous results support the concept that different AJ subtypes, sharing the same transmembrane cadherin types, can assemble in various configurations to either increase barrier function and promote physical cell-cell adhesion, or to lessen cell-cell adhesion and promote cell separation and migration

    Transmembrane protein PERP is a component of tessellate junctions and of other junctional and non-junctional plasma membrane regions in diverse epithelial and epithelium-derived cells

    Get PDF
    Protein PERP (p53 apoptosis effector related to PMP-22) is a small (21.4 kDa) transmembrane polypeptide with an amino acid sequence indicative of a tetraspanin character. It is enriched in the plasma membrane and apparently contributes to cell-cell contacts. Hitherto, it has been reported to be exclusively a component of desmosomes of some stratified epithelia. However, by using a series of newly generated mono- and polyclonal antibodies, we show that protein PERP is not only present in all kinds of stratified epithelia but also occurs in simple, columnar, complex and transitional epithelia, in various types of squamous metaplasia and epithelium-derived tumors, in diverse epithelium-derived cell cultures and in myocardial tissue. Immunofluorescence and immunoelectron microscopy allow us to localize PERP predominantly in small intradesmosomal locations and in variously sized, junction-like peri- and interdesmosomal regions (“tessellate junctions”), mostly in mosaic or amalgamated combinations with other molecules believed, to date, to be exclusive components of tight and adherens junctions. In the heart, PERP is a major component of the composite junctions of the intercalated disks connecting cardiomyocytes. Finally, protein PERP is a cobblestone-like general component of special plasma membrane regions such as the bile canaliculi of liver and subapical-to-lateral zones of diverse columnar epithelia and upper urothelial cell layers. We discuss possible organizational and architectonic functions of protein PERP and its potential value as an immunohistochemical diagnostic marker

    Anchoring of proteins to lactic acid bacteria

    Get PDF
    The anchoring of proteins to the cell surface of lactic acid bacteria (LAB) using genetic techniques is an exciting and emerging research area that holds great promise for a wide variety of biotechnological applications. This paper reviews five different types of anchoring domains that have been explored for their efficiency in attaching hybrid proteins to the cell membrane or cell wall of LAB. The most exploited anchoring regions are those with the LPXTG box that bind the proteins in a covalent way to the cell wall. In recent years, two new modes of cell wall protein anchoring have been studied and these may provide new approaches in surface display. The important progress that is being made with cell surface display of chimaeric proteins in the areas of vaccine development and enzyme- or whole-cell immobilisation is highlighted.

    Biomarker-predicted sugars intake compared with self-reported measures in US Hispanics/Latinos: results from the HCHS/SOL SOLNAS study

    Get PDF
    Abstract Objective Measurement error in self-reported total sugars intake may obscure associations between sugars consumption and health outcomes, and the sum of 24 h urinary sucrose and fructose may serve as a predictive biomarker of total sugars intake. Design The Study of Latinos: Nutrition & Physical Activity Assessment Study (SOLNAS) was an ancillary study to the Hispanic Community Health Study/Study of Latinos (HCHS/SOL) cohort. Doubly labelled water and 24 h urinary sucrose and fructose were used as biomarkers of energy and sugars intake, respectively. Participants’ diets were assessed by up to three 24 h recalls (88 % had two or more recalls). Procedures were repeated approximately 6 months after the initial visit among a subset of ninety-six participants. Setting Four centres (Bronx, NY; Chicago, IL; Miami, FL; San Diego, CA) across the USA. Subjects Men and women ( n 477) aged 18–74 years. Results The geometric mean of total sugars was 167·5 (95 % CI 154·4, 181·7) g/d for the biomarker-predicted and 90·6 (95 % CI 87·6, 93·6) g/d for the self-reported total sugars intake. Self-reported total sugars intake was not correlated with biomarker-predicted sugars intake ( r =−0·06, P =0·20, n 450). Among the reliability sample ( n 90), the reproducibility coefficient was 0·59 for biomarker-predicted and 0·20 for self-reported total sugars intake. Conclusions Possible explanations for the lack of association between biomarker-predicted and self-reported sugars intake include measurement error in self-reported diet, high intra-individual variability in sugars intake, and/or urinary sucrose and fructose may not be a suitable proxy for total sugars intake in this study population

    PLEKHA7 Is an Adherens Junction Protein with a Tissue Distribution and Subcellular Localization Distinct from ZO-1 and E-Cadherin

    Get PDF
    The pleckstrin-homology-domain-containing protein PLEKHA7 was recently identified as a protein linking the E-cadherin-p120 ctn complex to the microtubule cytoskeleton. Here we characterize the expression, tissue distribution and subcellular localization of PLEKHA7 by immunoblotting, immunofluorescence microscopy, immunoelectron microscopy, and northern blotting in mammalian tissues. Anti-PLEKHA7 antibodies label the junctional regions of cultured kidney epithelial cells by immunofluorescence microscopy, and major polypeptides of Mr ∼135 kDa and ∼145 kDa by immunoblotting of lysates of cells and tissues. Two PLEKHA7 transcripts (∼5.5 kb and ∼6.5 kb) are detected in epithelial tissues. PLEKHA7 is detected at epithelial junctions in sections of kidney, liver, pancreas, intestine, retina, and cornea, and its tissue distribution and subcellular localization are distinct from ZO-1. For example, PLEKHA7 is not detected within kidney glomeruli. Similarly to E-cadherin, p120 ctn, β-catenin and α-catenin, PLEKHA7 is concentrated in the apical junctional belt, but unlike these adherens junction markers, and similarly to afadin, PLEKHA7 is not localized along the lateral region of polarized epithelial cells. Immunoelectron microscopy definitively establishes that PLEKHA7 is localized at the adherens junctions in colonic epithelial cells, at a mean distance of 28 nm from the plasma membrane. In summary, we show that PLEKHA7 is a cytoplasmic component of the epithelial adherens junction belt, with a subcellular localization and tissue distribution that is distinct from that of ZO-1 and most AJ proteins, and we provide the first description of its distribution and localization in several tissues

    Plakophilin-2: a cell-cell adhesion plaque molecule of selective and fundamental importance in cardiac functions and tumor cell growth

    Get PDF
    Within the characteristic ensemble of desmosomal plaque proteins, the armadillo protein plakophilin-2 (Pkp2) is known as a particularly important regulatory component in the cytoplasmic plaques of various other cell–cell junctions, such as the composite junctions (areae compositae) of the myocardiac intercalated disks and in the variously-sized and -shaped complex junctions of permanent cell culture lines derived therefrom. In addition, Pkp2 has been detected in certain protein complexes in the nucleoplasm of diverse kinds of cells. Using a novel set of highly sensitive and specific antibodies, both kinds of Pkp2, the junctional plaque-bound and the nuclear ones, can also be localized to the cytoplasmic plaques of diverse non-desmosomal cell–cell junction structures. These are not only the puncta adhaerentia and the fasciae adhaerentes connecting various types of highly proliferative non-epithelial cells growing in culture but also some very proliferative states of cardiac interstitial cells and cardiac myxomata, including tumors growing in situ as well as fetal stages of heart development and cultures of valvular interstitial cells. Possible functions and assembly mechanisms of such Pkp2-positive cell–cell junctions as well as medical consequences are discussed
    corecore